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Direct Phase Determination of Triple Products from Bijvoet Inequalities 
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The classical method of phase determination from Bijvoet inequalities is applied to the phase ~hk= 
½(q~hk -- Or, r,) of the triple product Zhk = FhFkFg-4-¢. The phase-determining formula is then (in the case of 
a centrosymmetric configuration of anomalous scatterers): 

[Zhk[ 2 --I~1 z 
sin ~hk= 4ZhklZOhkl 

in which Zhk is the contribution from the imaginary part of the complex double Patterson function to 
Zhk, and [Z~k[ 2 =~([Zhk]2 + [ZKKI2)--[Zhk[ 2. It is shown that Zhk contains an important term, i.e. the contribu- 
tion from the origin peak of the double Patterson function, which is independent of the positions of the 
anomalous scatterers. A test calculation on a structure in P1, containing two Br ions, shows that, in fact, 
the phases of the triple products can be determined without introducing any a priori knowledge about 
the positions of the anomalous scatterers, provided an appropriate scaling procedure is applied. 

Introduction 

If a structure contains anomalous scatterers, and their 
contribution to the structure factor is known, then 
the average phase ~Sh =~((Ph--(P~) of Fh can be found 
by a method that was proposed simultaneously by 
Peerdeman & Bijvoet (1956), Ramachandran & Raman 
(1956) and Okaya & Pepinsky (1956). According to 
this method, for the case that the configuration of the 
anomalous scatterers is centrosymmetric, (Ph is given 
by the following expression: 

IFh[ 2 -IFKI 2 

sin (Ph: 4Fh[~(lFhlZ .4_[fr~12)_lfh[2-]1/2 (1) 

in which F~=  2 ~. f}' cos 2rch. ri, while f i '  is the imagi- 
] 

nary component in the form factor of atom j. From 
(1) the phase ~0 of the structure factor is found, apart 
from an ambiguity between q~ and re-~o. In practice 
the phase angle nearest to that of the heavy-atom con- 
tribution is accepted. If the configuration of the anom- 
alous scatterers is non-centrosymmetric then the for- 
mulation is slightly more complicated, but not funda- 
mentally different. 

In this paper we shall show that this method can 
be generalized to obtain the phase of a triple product 
from the 'Bijvoet difference' between [FhFkFK--;-~[ 2 and 
[Fr~Fr, Fh+k[ 2, with a formula closely analogous to (1). 
The basis for this approach is that the complex double 
Patterson function j'o(r)0(r + U)Q(r + V)dr, defined with 
the complex electron density function Q(r) and of which, 
analogous to Sayre (1953), the FhFuFg--~ are the 
Fourier coefficients, can be regarded as a structure 
containing a number of 'anomalous scatterers'. That 
the anomalous scatterer with the largest imaginary 
component of scattering power is situated at the origin 
of the double Patterson function even makes it feasible 

to determine the phases of triple products without 
knowing the positions of the anomalously scattering 
heavy atoms in the structure. 

In this connexion it must be remarked that in prin- 
ciple only origin-invariant phases are accessible to 
measurement by a physical experiment. Triple-product 
phases fulfil this requirement, and in this respect there 
is no need to fix the origin by locating the anomalous 
scatterers. 

Theory 

If a structure contains anomalous scatterers the struc- 
ture-factor equation is 

N 

Fh= E [J)(h)+/f) '] exp 2rcih.rj (2) 
j = l  

in which the form factors include temperature factors. 
The triple product FhFkFh---~ can then be written as 

N 

FhFkFF~ = E f~(h)j}(k)~(h + k )  
j = l  

N 

+ i  ~ fi'[J)(h)fj(k) 
j = l  

+L h) f (gTk-) %(k) fj(h 
N 

E { J~ 1 (h) Jj2(k)fj3(h +--~) 
J l , J2 , J3  = 1 

n o t  Jl  =J2 =J3 

+ i[j~(h)j~2(k)f)' 3 +f~l(h)fj2 J)a(iig~) 

+j) ' ,  J ) 2 ( k ) J ) a ( ~ ) ]  } 

x exp 27~i[h.(ri1- rj3)+ k.(r j2-r j3)]  (3) 

in which any term containing f~' more than once has 
been omitted. 
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The first two summations of (3) can be regarded as 
the co'ntribution of the origin peak of the complex 
double Patterson function, JQ(r)Q(r+U)~(r+V)dr, 
based on the complex electron density function, Q(r), 
to the triple product. The other terms in (3) correspond 
to contributions from peaks with position vectors 
( U = u 1 - r j 3  , V = r j 2 - r j 3  ). For the sake of argument 
we consider the case that the structure contains two 
identical anomalous heavy scatterers in P1. Then the 
imaginary part of (3) can be approximated by 

Zhk = 2f"[f(h)f(k)+/(h)/(h + k ) + / ( k ) f ( h  + k)] 

× [1 +cos  2nh. U1 +cos  2nk.  U1 +cos  2n(h+k) .  U1] 

(4) 
in which f(h)=J)~(h)=j~z(h) and f"=f~'l =f)2 are the 
real and imaginary part of the two anomalous scat- 
terers j l  and j2, respectively, and U~ is the interatomic 
vector between these atoms. In (4) the contributions 
from double Patterson peaks with form factors of the 
shape f'fJ~ and f'~fj(i,j~jl,j2) have been neglected. 
The double Patterson function, with Fourier coeffi- 
cients Zhk = FhFkFh-w~, can thus be regarded as a 'struc- 
ture' containing an anomalous scatterer at the origin, 
whose imaginary part of the form factor is 
2f"[f(h)f(k)+/(h)/(h + k) + / ( k ) / ( h  + k)], and 

anomalous scatterers on the hyper-axes with positions 
(Ua,0), (Ua,U~), (0,U~), (Ua,0), (U~,U1) and (0,U~), 
whose imaginary parts of the form factors are one 
half of that of the origin peak. Therefore, (1) applies 
equally well to the phase ~hk and reads 

IZhkl2-- IZhk[ 2 
sin (~hk '~' 4Zhk[-~lZhkl 2 + IZ~I2)_ i,Chkl2]X/2 (5) 

in which Zhk is given by (4). 
If the vector Ux between the two anomalous scat- 

terers is not known, then, as will be shown below, an 
omission of the cosine terms in (4): 

Zhk=2 f" [ f (h ) f ( k )+ f (h ) f (~ )+ f ( k ) f (~ ) ]  (6) 

leads to a good result, providing a scaling procedure 
is applied. Clearly the basis for the possibility of using 
(6) instead of(4) in the phase-determining formula (5) is 
the fact that the complex double Patterson function 
contains an origin peak with a complex form factor, an 
anomalous scatterer as it were. This fact makes it feas- 
ible to find phase information from Bijvoet inequalities 
without even knowing the positions of the anomalous 
scatterers in the unit cell. Of course, the ambiguity 
between q~ and n-~0 as possible values for the phase 
of the triple product still remains, but it is quite safe, 
in view of the alleged positivity of the triple product, 
to choose the one that is nearer to zero. This is especi- 
ally true if the triple products FhFkF~-4--~ are chosen 
in such a way that the corresponding value of A = 
2631EhEkEff-~[/63/2 is reasonably large. 

In order to keep the argument simple the method 
was explained in terms of a structure containing two 
identical anomalous scatterers in the unit cell. How- 

ever, the formulae may easily be extended to any con- 
figuration of anomalous scatterers, even the non- '  
centrosymmetric, by using (3) to derive ZhU and sub- 
sequently applying the standard methods of anoma- 
lous diffraction as used for ordinary structure factors. 

Test calculations 

The method was applied to the X-ray data of dex- 
etimide (Spek, 1976). The space group is P1 ; the struc- 
ture contains two anomalous scatterers (Br-) in the 
unit cell. Some relevant data are given in Table 1. 
In order to reproduce experimental conditions, the 
scale factor and temperature factor, derived from 
Wilson's (1942) statistics, were applied throughout the 
calculations. 

Table 1. X-ray data for the crystal structure 
of dexetimide, C23H27N2OzBr.½H20 

Space group: P 1 F(000) = 478 
Z = 2 E(000) = 3.16 
a = 7"390 (2) A Absorption correction 
b=9.073 (1) applied #(Cu K~)=29.4 cm-  1 
c =  17.248 (2) f " (Br )=  1-46 

= 96"24 (1) ° Number  of observed 
f l= 101.78 (2) reflexions hkl:__ 2419 
7=81.28 (2) hkl: 2793 
).(Cu Ks)=  1-5418 A R =0.046 

Cwi,so. = 1.08 cl.s. 
Bwilson = 3"94 A 2 

In a preliminary calculation from 103 reflexions, for 
which ]F°I > 40 and IEhJ > 1"3, 506 triple products were 
generated. Calculations performed with (5) gave two 
sets of sin q~ca~c values, one with the Br positions 
known [Z~u calculated by (4)] and one with them un- 
known [Thk calculated by (6)]. Plots of sin (pcalc against 
sin (ptrue, indicate a linear relation, with correlation 
coefficients of 0.86 in both cases and with slopes of 
0-97 and 3.20 respectively. Evidently the slope of the 
second graph, the one that is based on the origin peak 
of the double Patterson function alone, is far too 
small; many of the ]sin (/0 calc] values happen to be 
larger than one. The reason for this is that, since large 
structure factors are involved, the values of cos 2nh. U, 
cos 2nk.  U and cos 2n(h+k) .  U tend to be positive; 
consequently the value of ~hk calculated by (4) is 
systematically larger than the value calculated by (6). 
Therefore a scaling procedure was applied. It is based 
on the requirement 

k - 2 ( s i n 2  tDhk=Calcx,2h, k - - I f s i n 2 ~ p ( ~ l A ) d @  
h , k  

= / .  e l ( A )  \ 

\AIo(A)/h. u 
where k is a scaling factor and II(A)/AIo(A) is the 
expectation value of sin2~0 given the value of A 

, t r u e  ~Ohk is the average value of the phases (t0hk and --~o~, obtained 
from the refined structure. 
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(Hauptman, 1972). The scaling procedure was itera- 
tively applied to both curves; in each cycle all values 
of Isin ~Scatcl larger than k were set equal to k. The 
resulting scaling factors were 0.75 and 2.4, respectively, 
which gave rise to two straight lines with slopes of 
0"97 and 0-98 and correlation coefficients of 0"88 and 
0-87 respectively [Fig. l(a) and (b)]. The resulting 
graphs of ~5 c~tc against (~true for the two sets are shown 
in Fig. l(c) and (d); the corresponding values of 

(IA~hkl)h,k and (IAq~hk 12)h,kl]2 are ]4 and 19 ° for the 
first set (known Br positions) and 15 and 20 ° for the 
second set (unknown Br positions). The gratifying re- 
sult is that the phases of the triple products can be 
determined quite accurately without introducing the 
heavy-atom positions. A knowledge of these positions 
scarcely improves the accuracy of the results and only 
influences the scale factor. A number of additional 
calculations (Table 2) using both IFP, I and IF~,I, with 
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Fig. 1. Comparison of correct values of sin ¢~ and ~5 with those obtained by (5) and subsequent scaling. (a),(c) Z~k calculated with known 
heavy-atom positions. (b),(d) Thk calculated with unknown heavy-atom positions. 
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Table 2. Results  o f  the phase determination o f  triple products employing the Bijvoet  inequalities with the data 
o f  dexet imide 

Heavy-atom Number of 
Set F pos i t ions  Minimum Minimum Number of triple Scaling Correlation 

number u s e d  included [El [El ref lexions products  f ac to r  coefficient ([A ~ol5 ( d 2q~ ) ~/2 
1 F ° no 40 1"3 103 506 2-4 0"87 15 ° 20 ° 
2 F ° yes 40 1"3 103 506 0"75 0"88 14 19 
3 F c no 40 1.3 86 342 2.1 0.95 10 15 
4 U yes 40 1.3 86 342 0.65 0"95 10 15 
5 F ° no 50 0"0 87 441 2-0 0-82 22 34 
6 F ° yes 50 0-0 87 441 0"89 0"75 21 37 
7 F c no 50 0"0 64 342 2"0 0"89 16 30 
8 U yes 50 0"0 64 342 0.83 0-87 16 31 
9 F ° no 25 1-2 322 5139 1.8 0.77 21 37 

10 F c no 25 1.2 258 3832 1"4 0.92 14 19 

varying lower limits on ]Fhl and IEhl, merely confirm 
these results and show the influence of observational 
errors. Especially interesting for practical applica- 
tion is entry No. 9 in this table, where the phases of 
5139 triple products were calculated with a mean error 
in q~ of 21 °. 

Discussion 

The method described in the previous section opens 
the possibility of finding phases of triple products 
from Bijvoet differences, without needing to find the 
positions of the anomalous scatterers first. That  the 
phases of the triple products can be determined with 
reasonable accuracy, at least in a structure containing 
only a few anomalous scatterers, was shown by a test 
calculation on a structure in P1 containing two Br ions. 
An inspection of Table 2, where the results are given, 
shows that, for the chosen example, the accuracy of 
the phase determination does not even depend on 
whether or not the heavy-atom positions are in- 
troduced, provided that an appropriate scaling pro- 
cedure, based on the theoretical distribution of the 
phase of a triple product, is applied. 

However, the accuracy does strongly depend on the 
accuracy of the Bijvoet differences, as is shown by the 

( [A(~Ohk[)h,k  if dramatic decrease in (IA~Phkl)h,k and z 1/2 

[F~['s are used instead of [F[['s. In this context it is 
interesting to note that the anomalous phase-determi- 
nation methods will certainly receive new impetus if 
synchrotron radiation becomes of more common use, 
since high values of f "  are possible by tuning the 

radiation wavelength near the absorption edge. Our 
method may then find application in protein phase 
determination, especially since neither the positions 
nor the occupancies of the heavy-atom sites need to 
be known. 

A practical qualitative application of the method 
lies in the possibility of achieving enantiomorph 
discrimination by selecting those triple products 
which show large Bijvoet differences. 

Extension of the procedure to other structure in- 
variants (e.g. quartets, quintets) is straightforward. 
Also, reasoning along the same lines, the isomorphous 
replacement method can, in principle, be applied to 
obtain the phases of structure invariants. 
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